CopyPastor

Detecting plagiarism made easy.

Score: 1; Reported for: String similarity Open both answers

Possible Plagiarism

Reposted on 2019-09-29
by James

Original Post

Original - Posted on 2019-09-29
by James



            
Present in both answers; Present only in the new answer; Present only in the old answer;

try this demo with keras==2.2.4 and tensorflow==1.13.1:
from keras import Sequential, Model from keras.layers import Embedding, GlobalAveragePooling1D, Dense, concatenate import numpy as np model1 = Sequential() model1.add(Embedding(20, 10, trainable=True)) model1.add(GlobalAveragePooling1D()) model1.add(Dense(1, activation='sigmoid')) model2 = Sequential() model2.add(Embedding(20, 10, trainable=True)) model2.add(GlobalAveragePooling1D()) model2.add(Dense(1, activation='sigmoid')) model_concat = concatenate([model1.output, model2.output], axis=-1) model_concat = Dense(1, activation='softmax')(model_concat) model = Model(inputs=[model1.input, model2.input], outputs=model_concat) model.compile(loss='binary_crossentropy', optimizer='adam') X_train_source = np.random.randint(0, 20, (10000, 256)) X_train_pod = np.random.randint(0, 20, (10000, 256)) Y_train = np.random.randint(0, 2, 10000) model.fit([X_train_source, X_train_pod], Y_train, batch_size=1000, epochs=200, verbose=True)
try this demo with keras==2.2.4 and tensorflow==1.13.1:
from keras import Sequential, Model from keras.layers import Embedding, GlobalAveragePooling1D, Dense, concatenate import numpy as np model1 = Sequential() model1.add(Embedding(20, 10, trainable=True)) model1.add(GlobalAveragePooling1D()) model1.add(Dense(1, activation='sigmoid')) model2 = Sequential() model2.add(Embedding(20, 10, trainable=True)) model2.add(GlobalAveragePooling1D()) model2.add(Dense(1, activation='sigmoid')) model_concat = concatenate([model1.output, model2.output], axis=-1) model_concat = Dense(1, activation='softmax')(model_concat) model = Model(inputs=[model1.input, model2.input], outputs=model_concat) model.compile(loss='binary_crossentropy', optimizer='adam') X_train_source = np.random.randint(0, 20, (10000, 256)) X_train_pod = np.random.randint(0, 20, (10000, 256)) Y_train = np.random.randint(0, 2, 10000) model.fit([X_train_source, X_train_pod], Y_train, batch_size=1000, epochs=200, verbose=True)

        
Present in both answers; Present only in the new answer; Present only in the old answer;