I will take the existing example from this post, https://stackoverflow.com/questions/17071871/select-rows-from-a-dataframe-based-on-values-in-a-column-in-pandas:
                        
                        
                        
                            import pandas as pd
                        
                            import numpy as np
                        
                            df = pd.DataFrame({'A': 'foo bar foo bar foo bar foo foo'.split(),
                        
                                               'B': 'one one two three two two one three'.split(),
                        
                                               'C': np.arange(8), 'D': np.arange(8) * 2})
                        
                            print(df)
                        
                            #      A      B  C   D
                        
                            # 0  foo    one  0   0
                        
                            # 1  bar    one  1   2
                        
                            # 2  foo    two  2   4
                        
                            # 3  bar  three  3   6
                        
                            # 4  foo    two  4   8
                        
                            # 5  bar    two  5  10
                        
                            # 6  foo    one  6  12
                        
                            # 7  foo  three  7  14
                        
                        
                        
                        
                        
                        Now given the above dataset I am looking for an efficient way to return all rows containing a value from any column matching on a regex. 
                        
                        
                        
                        For example, 
                        
                        
                        
                            a search on '1[2,4]|three' should return
                        
                        
                        
                            3  bar  three  3   6
                        
                            6  foo    one  6  12
                        
                            7  foo  three  7  14
                        
                
             
            
                
                    
                        To select rows whose column value equals a scalar, `some_value`, use `==`:
                        
                        
                        
                            df.loc[df['column_name'] == some_value]
                        
                        
                        
                        To select rows whose column value is in an iterable, `some_values`, use `isin`:
                        
                        
                        
                            df.loc[df['column_name'].isin(some_values)]
                        
                        
                        
                        Combine multiple conditions with `&`: 
                        
                        
                        
                            df.loc[(df['column_name'] >= A) & (df['column_name'] <= B)]
                        
                        
                        
                        Note the parentheses. Due to Python's [operator precedence rules](https://docs.python.org/3/reference/expressions.html#operator-precedence), `&` binds more tightly than `<=` and `>=`. Thus, the parentheses in the last example are necessary. Without the parentheses 
                        
                        
                        
                            df['column_name'] >= A & df['column_name'] <= B
                        
                        
                        
                        is parsed as 
                        
                        
                        
                            df['column_name'] >= (A & df['column_name']) <= B
                        
                        
                        
                        which results in a [Truth value of a Series is ambiguous error][1].
                        
                        
                        
                        ----------
                        
                        
                        
                        To select rows whose column value *does not equal* `some_value`, use `!=`:
                        
                        
                        
                            df.loc[df['column_name'] != some_value]
                        
                        
                        
                        
                        
                        `isin` returns a boolean Series, so to select rows whose value is *not* in `some_values`, negate the boolean Series using `~`:
                        
                        
                        
                            df.loc[~df['column_name'].isin(some_values)]
                        
                        
                        
                        ----------
                        
                        
                        
                        For example,
                        
                        
                        
                            import pandas as pd
                        
                            import numpy as np
                        
                            df = pd.DataFrame({'A': 'foo bar foo bar foo bar foo foo'.split(),
                        
                                               'B': 'one one two three two two one three'.split(),
                        
                                               'C': np.arange(8), 'D': np.arange(8) * 2})
                        
                            print(df)
                        
                            #      A      B  C   D
                        
                            # 0  foo    one  0   0
                        
                            # 1  bar    one  1   2
                        
                            # 2  foo    two  2   4
                        
                            # 3  bar  three  3   6
                        
                            # 4  foo    two  4   8
                        
                            # 5  bar    two  5  10
                        
                            # 6  foo    one  6  12
                        
                            # 7  foo  three  7  14
                        
                        
                        
                            print(df.loc[df['A'] == 'foo'])
                        
                        
                        
                        yields
                        
                        
                        
                                 A      B  C   D
                        
                            0  foo    one  0   0
                        
                            2  foo    two  2   4
                        
                            4  foo    two  4   8
                        
                            6  foo    one  6  12
                        
                            7  foo  three  7  14
                        
                        
                        
                        ----------
                        
                        
                        
                        If you have multiple values you want to include, put them in a
                        
                        list (or more generally, any iterable) and use `isin`:
                        
                        
                        
                            print(df.loc[df['B'].isin(['one','three'])])
                        
                        
                        
                        yields
                        
                        
                        
                                 A      B  C   D
                        
                            0  foo    one  0   0
                        
                            1  bar    one  1   2
                        
                            3  bar  three  3   6
                        
                            6  foo    one  6  12
                        
                            7  foo  three  7  14
                        
                        
                        
                        
                        
                        ----------
                        
                        
                        
                        Note, however, that if you wish to do this many times, it is more efficient to
                        
                        make an index first, and then use `df.loc`:
                        
                        
                        
                            df = df.set_index(['B'])
                        
                            print(df.loc['one'])
                        
                        
                        
                        yields
                        
                        
                        
                                   A  C   D
                        
                            B              
                        
                            one  foo  0   0
                        
                            one  bar  1   2
                        
                            one  foo  6  12
                        
                        
                        
                        or, to include multiple values from the index use `df.index.isin`:
                        
                        
                        
                            df.loc[df.index.isin(['one','two'])]
                        
                        
                        
                        yields
                        
                        
                        
                                   A  C   D
                        
                            B              
                        
                            one  foo  0   0
                        
                            one  bar  1   2
                        
                            two  foo  2   4
                        
                            two  foo  4   8
                        
                            two  bar  5  10
                        
                            one  foo  6  12
                        
                        
                        
                        
                        
                          [1]: https://stackoverflow.com/questions/36921951/truth-value-of-a-series-is-ambiguous-use-a-empty-a-bool-a-item-a-any-o